8 research outputs found

    Evolving attackers against wireless sensor networks using genetic programming

    Get PDF
    Recent hardware developments have made it possible for the Internet of Things (IoT) to be built. A wide variety of industry sectors, including manufacturing, utilities, agriculture, transportation, and healthcare are actively seeking to incorporate IoT technologies in their operations. The increased connectivity and data sharing that give IoT systems their advantages also increase their vulnerability to attack. In this study, the authors explore the automated generation of attacks using genetic programming (GP), so that defences can be tested objectively in advance of deployment. In the authors' system, the GP-generated attackers targeted publish-subscribe communications within a wireless sensor networks that was protected by an artificial immune intrusion detection system (IDS) taken from the literature. The GP attackers successfully suppressed more legitimate messages than the hand-coded attack used originally to test the IDS, whilst reducing the likelihood of detection. Based on the results, it was possible to reconfigure the IDS to improve its performance. Whilst the experiments were focussed on establishing a proof-of-principle rather than a turnkey solution, they indicate that GP-generated attackers have the potential to improve the protection of systems with large attack surfaces, in a way that is complementary to traditional testing and certification

    A Systematic Review of the State of Cyber-Security in Water Systems

    Get PDF
    Critical infrastructure systems are evolving from isolated bespoke systems to those that use general-purpose computing hosts, IoT sensors, edge computing, wireless networks and artificial intelligence. Although this move improves sensing and control capacity and gives better integration with business requirements, it also increases the scope for attack from malicious entities that intend to conduct industrial espionage and sabotage against these systems. In this paper, we review the state of the cyber-security research that is focused on improving the security of the water supply and wastewater collection and treatment systems that form part of the critical national infrastructure. We cover the publication statistics of the research in this area, the aspects of security being addressed, and future work required to achieve better cyber-security for water systems

    Security of smart manufacturing systems

    Get PDF
    A revolution in manufacturing systems is underway: substantial recent investment has been directed towards the development of smart manufacturing systems that are able to respond in real time to changes in customer demands, as well as the conditions in the supply chain and in the factory itself. Smart manufacturing is a key component of the broader thrust towards Industry 4.0, and relies on the creation of a bridge between digital and physical environments through Internet of Things (IoT) technologies, coupled with enhancements to those digital environments through greater use of cloud systems, data analytics and machine learning. Whilst these individual technologies have been in development for some time, their integration with industrial systems leads to new challenges as well as potential benefits. In this paper, we explore the challenges faced by those wishing to secure smart manufacturing systems. Lessons from history suggest that where an attempt has been made to retrofit security on systems for which the primary driver was the development of functionality, there are inevitable and costly breaches. Indeed, today's manufacturing systems have started to experience this over the past few years; however, the integration of complex smart manufacturing technologies massively increases the scope for attack from adversaries aiming at industrial espionage and sabotage. The potential outcome of these attacks ranges from economic damage and lost production, through injury and loss of life, to catastrophic nation-wide effects. In this paper, we discuss the security of existing industrial and manufacturing systems, existing vulnerabilities, potential future cyber-attacks, the weaknesses of existing measures, the levels of awareness and preparedness for future security challenges, and why security must play a key role underpinning the development of future smart manufacturing systems
    corecore